Explicit Numerical Integrators

From Open Electrical
Revision as of 22:12, 17 February 2017 by Jules (talk | contribs) (Created page with "== Modified Euler Method == The modified Euler (or Heun's) method is a two-stage [http://en.wikipedia.org/wiki/Predictor%E2%80%93corrector_method predictor-corrector method]:...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Modified Euler Method

The modified Euler (or Heun's) method is a two-stage predictor-corrector method:

Predictor stage:

[math] \boldsymbol{\tilde{x}}(t + \Delta t) = \boldsymbol{x}(t) + \Delta t \boldsymbol{f}(\boldsymbol{x}(t), t) \, [/math]

Corrector stage:

[math] \boldsymbol{x}(t + \Delta t) = \boldsymbol{x}(t) + \frac{\Delta t}{2} \left[ \boldsymbol{f}(\boldsymbol{x}(t), t) + \boldsymbol{f}(\boldsymbol{\tilde{x}}(t + \Delta t), t) \right] \, [/math]

4th-Order Runge Kutta Method

The 4th-order Runge-Kutta algorithm is one of the most popular numerical integration methods for power systems.

[math]\boldsymbol{k}_{1} = \Delta t \boldsymbol{f}(\boldsymbol{x}(t), t) \, [/math]
[math]\boldsymbol{k}_{2} = \Delta t \boldsymbol{f}(\boldsymbol{x}(t) + \frac{\boldsymbol{k}_{1}}{2}, t + \frac{\Delta t}{2}) \, [/math]
[math]\boldsymbol{k}_{3} = \Delta t \boldsymbol{f}(\boldsymbol{x}(t) + \frac{\boldsymbol{k}_{2}}{2}, t + \frac{\Delta t}{2}) \, [/math]
[math]\boldsymbol{k}_{4} = \Delta t \boldsymbol{f}(\boldsymbol{x}(t) + \boldsymbol{k}_{3}, t + \Delta t) \, [/math]
[math] \boldsymbol{x}(t + \Delta t) = \boldsymbol{x}(t) + \frac{1}{6} \left( \boldsymbol{k}_{1} + 2 \boldsymbol{k}_{2} + 2 \boldsymbol{k}_{3} + \boldsymbol{k}_{4} \right) \, [/math]